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AC1 and α Coefficients

OBJECTIVE

This chapter presents two alternatives to Kappa named the AC1 and
Aickin’s α (not to be confounded with Krippendorff’s α of the previous
chapter) proposed by Gwet (2008a) and Aickin (1990) respectively, the
focus being on AC1. Both coefficients were developed to overcome Kap-
pa’s paradox problem discussed in chapter 2. The probabilistic models
underlying these 2 coefficients are discussed as well. Also introduced is
Gwet’s AC2, the extension of AC1 to ordinal, interval and ratio ratings
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“There is no true value of any characteristic, state, or condition that is
defined in terms of measurement or observation. Change of procedure for
measurement (change in operational definition) or observation produces a
new number · · · . There is no such thing as a fact concerning an empirical
observation.”

- Edwards Deming (1900-1993) -

4.1 Overview

We devote this chapter primarily to the AC1 statistic proposed by Gwet
(2008a) as a paradox-resistant alternative to the unstable Kappa coefficient. Will
also be discussed is the alpha (α) coefficient of Aickin (1990), an inter-reliability
statistic based on a clear-cut definition of the notion of “extent of agreement among
raters.” Both coefficients differ from Kappa, mainly in the way the percent chance
agreement is calculated. As a matter of fact, the poor statistical properties of Kappa
stem from an inadequate approach used for computing the percent chance agree-
ment. The Kappa and Pi coefficients rely on a chance-agreement probability expres-
sion that is valid only under the improbable assumption that all ratings are known
to be independent even before the experiment had been carried out. To justify the
2 expressions used to evaluate the chance-agreement probabilities of Kappa and Pi,
the reasoning was that if the processes by which 2 raters classify a subject are sta-
tistically independent, then the probability that they agree is the product of the
individual probabilities of classification into the category of agreement. However, ra-
ters often rate the same subjects, and are therefore expected to produce ratings that
are dependent with possibly a few exceptions.

Throughout this chapter, we will consider that independence occurs when a non-
deterministic1 rating is assigned to a subject that is hard to rate. Nondeterministic
ratings may be expected on a small fraction of the subject population only, and
certainly not on the whole population. The AC1 of Gwet(2008a), and the alpha of
Aickin (1990) are based upon the more realistic assumption that only a portion of
the observed ratings will potentially lead to agreement by chance. The difficulty
to overcome will be to estimate the percent of subjects that are associated with a
nondeterministic rating.

When we started the work on improving Kappa, we were not aware of Aickin’s
theory until after the publication of the ideas to be discussed here in Gwet (2008a).
After studying Aickin’s work, we discovered that our proposed framework was more
general, and that the conceptual definition of the extent of agreement among raters

1The process of rating a subject is considered nondeterministic if it has no apparent connection
with the subject’s characteristics.
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we proposed was also different from Aickin’s. Aickin’s alpha coefficient for 2 raters
represents the portion of the entire population of subjects that both raters will classify
identically for cause, as opposed to classifying them identically by chance. To see
what Gwet’s AC1 for 2 raters conceptually represents, imagine that all subjects to be
classified into identical categories by pure chance are first identified, then removed
from the population of subjects. This operation creates a new trimmed population
where agreement by chance would be impossible. The AC1 coefficient is the relative
number of subjects in the trimmed subject population upon which the raters agreed.
AC1 and alpha coefficients both represent a probability of agreement for cause, which
are calculated with respect to 2 different baseline subject populations. Although
limited to the case of two raters only, we have found Aickin’s proposal useful and
decided to include it in the discussions.

Among Kappa’s strengths is a genuine attempt to correct the percent agreement
for chance agreement, and the simplicity with which this was done. Among its limi-
tations are the paradoxes described by Feinstein and Cicchetti (1990), where Kappa
would yield a low value when the raters show high agreement. In this chapter we
propose the AC1 coefficient, which is similar to Kappa in its formulation and its sim-
plicity, in addition to being paradox-resistant. The alpha coefficient is also close to
Kappa in its form. But unlike Kappa and AC1, the alpha coefficient is computation-
intensive with its iterative procedure. AC1 and alpha both share the same feature of
being paradox-resistant.

4.2 Gwet’s AC1 and Aickin’s α for 2 Raters

This section describes the procedures for computing the AC1 and α coefficients in
the case of 2 raters classifying a sample of n raters into one of q possible categories.
The calculation of these coefficients will also be illustrated in a numerical example.

4.2.1 The AC1 Statistic

Let us consider a two-rater reliability experiment based on a q-level no-
minal measurement scale. As previously indicated, rating data resulting from such
an experiment could be conveniently organized in a contingency table such as Table
2.7 in chapter 2. The AC1 coefficient, denoted by γ̂1 is defined as follows :

γ̂1 =
pa − pe

1 − pe
, with pa =

1
1 − pm

q∑
k=1

p
kk

, pe =
1

q − 1

q∑
k=1

πk(1 − πk), (4.1)
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where pm is the relative number of subjects rated by a single rater (i.e. 1 rating
is missing)2, and πk = (pk+ + p+k)/2. Note that pk+ and p+k represent the relative
number of subjects assigned to category k by raters A and B respectively. The symbol
p

kk
is the relative number of subjects classified into category k by both raters. While

πk represents the probability of a randomly-selected rater to classify a randomly-
selected subject into category k, the chance-agreement probability pe is a product of
the following 2 quantities:

� The probability that 2 raters agree given that the subject being rated was
assigned a nondeterministic score. This conditional3 probability is 1/q.

� The propensity for a rater to assign a nondeterministic score, which is estima-
ted by the ratio:

∑q
k=1 πk(1 − πk)

/
(1 − 1/q).

Section 4.4 contains a more detailed discussion of the theory behind this statis-
tic. Gwet (2008a) also provides examples and theoretical results related to the AC1

statistic.

4.2.2 Aickin’s α-Statistic

The alpha statistic α̂ of Aickin (1990) is defined as follows:

α̂ =
pa − pe

1 − pe
, where pe =

q∑
k=1

p
(a)
k|h · p(b)

k|h, (4.2)

and p
(a)
k|h represents the probability for rater A to classify into category k, a sub-

ject known to be hard to classify. The final classification of this particular group of
hard-to-classify subjects involves guesswork and will be random. The overall percent
agreement pa is the same as that of equation 4.1. The main difference between Kappa
and alpha lies in the way the percent chance agreement is calculated. While Kappa’s
percent chance agreement includes all ratings, Aickin’s only uses ratings associated
with the hard-to-classify subjects. Aickin’s theory from which the alpha coefficient
is derived, is discussed in section 4.3.

Because the group of hard-to-classify subjects is not identifiable, there is no simple
expression for obtaining the probabilities p

(a)
k|h and p

(b)
k|h. To solve this problem, Aickin

(1990) proposed an iterative algorithm based on the following system of 3 equations:

2All subjects not rated by either rater are excluded from the analysis.
3The condition here being the nondeterministic nature of the ratings, which will lead any resulting

agreement to be considered chance agreement.
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α̂(t+1) =
pa − p

(t)
e

1 − p
(t)
e

, where p(t)
e =

q∑
k=1

p
a(t)
k|h · pb(t)

k|h , (4.3)

p
a(t+1)
k|h =

pk+(
1 − α̂(t)

)
+ α̂(t)p

b(t)
k|h
/

p
(t)
e

, for k = 1, · · · , q, (4.4)

p
b(t+1)
k|h =

p+k(
1 − α̂(t)

)
+ α̂(t)p

a(t)
k|h
/

p
(t)
e

, for k = 1, · · · , q. (4.5)

This iterative process is initiated with the marginal probabilities pk+ and p+k as
starting values for the varying probabilities p

a(t)
k|h and p

b(t)
k|h . That is, p

a(0)
k|h = pk+, and

p
b(0)
k|h = p+k. Therefore, the initial alpha value α̂(0) when t = 0 will be identical to the

classical Kappa statistic. The next alpha value α̂(1) when t = 1 is calculated from
α̂(0) and the other probability values according to the above equations. The iterative
process will stop when 2 consecutive Alpha values α̂(t+1) and α̂(t) does not exceed a
predetermined small value such as 0.001, which depends on the precision you like to
achieve.

4.2.3 Example

This section presents a practical example to illustrate the calculation of
the AC1 and α agreement coefficients. To compute the α coefficient, Aickin recom-
mends to add a pseudo-count4 of 1 to the total count of subjects, and to distribute it
uniformly among all cells to avoid convergence problems with the iterative algorithm.

Example 4.1

To illustrate the calculation of AC1 and alpha coefficients, let us consider the reliability
data of Table 4.1. This data represents the distribution of human subjects suffering
from back pain, by pain type, and observing clinician.

Table 4.1:
Ratings of Spinal Pain by Clinicians 1 and 2, and Pain Type

Clinician 2
Clinician 1 Derangement Dysfunctional Postural

Syndrome Syndrome Syndrome

Derangement Syndrome 55 10 2
Dysfunctional Syndrome 6 4 10

Postural Syndrome 2 5 6

4A “pseudo-count” is an integer value primarily used for changing artificially a cell count value
from being 0 to being negligible. Zero-count cells are known to be problematic to probability-based
computing systems, but cannot be eliminated unless they represent events known to be impossible.
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Cohen’s Kappa for this data is given by κ̂c = (0.65−0.4835)/(1−0.4835) = 0.3224.
The AC1 coefficient on the other hand is γ̂1 = (0.65−0.257725)/(1−0.257725) = 0.5285.

As for Aickin’s Alpha, after 10 iterations we obtained α̂ = (0.65−0.4121)/(1−0.4121) =
0.4047, and the final “marginal” probabilities related to hard-to-classify subjects are
given by (p(a)

1|h, p
(a)
2|h, p

(a)
3|h) = (0.5993437, 0.2442839, 0.1563717) for clinician A, and by(

p
(b)
1|h, p

(b)
2|h, p

(b)
3|h
)

= (0.5321665, 0.2274873, 0.2403553) for clinician B.

The Kappa, alpha, and AC1 statistics in example 4.1 are respectively given by
0.322, 0.405, and 0.529. Kappa represents less than half the magnitude of the overall
agreement probability pa = 0.65. This drastic reduction in the magnitude of pa

results from Kappa’s unduly high chance-agreement correction. AC1 on the other
hand accounts for more than 80% of that value. As will be seen in the next few
sections, alpha does not measure the same concept as Kappa and AC1 and a direct
comparison would be inappropriate.

While AC1 and Kappa represent agreement probabilities based on the pool of
subjects from which the Hard-to-classify ones have been removed, alpha on the other
hand represents the probability of “for-cause” agreement5 based on all subjects.
Because the reference population for evaluating alpha is bigger, α̂ will generally be
lower than AC1 unless the group of subjects does not have those special subjects
who may lead to an agreement by chance. In practice alpha will often be greater
than Kappa, and this is primarily due to the poor performance of Kappa in many
situations.

The next two sections 4.3 and 4.4 deal with the theoretical foundations of the
alpha and AC1 statistics and require some limited abstract thinking. Our primary ob-
jective in these 2 sections is to answer the following question : “If we knew everything
about all subjects, and raters of interest (including the ratings that the raters would
assign to each rater, and the raters’ skill level), how would we evaluate inter-rater
reliability ?” This hypothetical situation will lead to the creation of a theoretical
framework. In a real experiment based on a sample of subjects, some aspects of this
problem, which are taken for granted within the theoretical framework will be unk-
nown. We will then need to resort to some estimation procedures to compensate for
these gaps in our knowledge. The result will be a statistical procedure subject to
sampling errors, which will be studied with the techniques of inferential statistics
discussed in Chapter 5.

Although sections 4.3 and 4.4 explain the motivation behind the formulation of
AC1, and that of alpha, they are not essential for using equations 4.1 and 4.2 in

5A “for-cause” agreement is an agreement situation where both raters classified a subject into
the same category for a reason.


