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Agreement Coefficients for
Ordinal and Interval Data
OBJECTIVE

The objective of this chapter is to extend the study of agreement coef-
ficients to ordinal and interval data. We will see that the approach re-
commended by Berry and Mielke (1988) , and Janson and Olsson (2001)
for ordinal and interval data reduces to the weighted Kappa proposed
by Cohen (1968) with the Quadratic Weights. Also extended to ordinal
and interval data are the Pi agreement coefficient of Scott (1955), as well
as the Brennan-Prediger statistic (see Brennan & and Prediger, 1981).
These extensions are first proposed for the simple situation of 2 raters

and 2 response categories, before being generalized to the case of 3 raters
or more.
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3.1 Overview

Cohen’s Kappa coefficient discussed in chapter 2 is suitable only for the ana-
lysis of nominal ratings. With nominal ratings, raters classify subjects into response
categories that have no order structure. That is, two consecutive nominal categories
are considered as different as the first and last categories. If categories can be ordered
(or ranked) from the “Low” to the “High” ends, then the Kappa coefficient could
dramatically understate the extent of agreement among raters. Consider an example
where a group of adults are classified twice into one of the categories “Underweight”,
“Normal”, “Overweight”, and “Obese” based on their Body Mass Index (BMI). The
adults are classified the first time using BMI values that are actually measured (i.e.
the “Measured” approach). The adults are classified again using self-reported BMI
values (i.e. the “Self-Reported” approach). The problem is to evaluate the extent
of agreement between the “Measured” and “Self-Reported” approaches. Although
Kappa may technically be used to evaluate the extent of agreement between the
measured and self-reported approaches, we expect it to yield misleading results. The
results will be misleading primarily because Cohen’s Kappa treats any disagreement
as total disagreement. Most researchers would consider the self-reported and measu-
red approaches to be more in agreement if they categorize an adult participant into
the “Overweight” and “Obese” categories, than if they categorize that participant
into the “Underweight” and “Obese” groups. Because it does not account for partial
agreement, Kappa as proposed by Cohen (1960) is inefficient for analyzing ordinal
ratings. Cohen (1968) proposed the weighted version of Kappa to fix this problem.
But what we need, is a systematic and logical approach for expanding agreement
coefficients to handle ordinal as well as interval and ratio data.

Berry and Mielke (1988), Janson and Olsson (2001), as well as Janson and Olsson
(2004) have proposed important extensions of Kappa to ordinal, interval, and ratio
data1. These extensions even allow for the use of multivariate scores on subjects.
While a single score determines the subject category membership, the multivariate
score on the other hand is a vector of several scores, each being associated with one
of the categories. The magnitude of one score associated with a category will be
commensurate with the subject’s likelihood of belonging to that category. Situations
where a subject could potentially belong to many categories to some degree are
common in practice. For example a patient may show symptoms for multiple diseases.
Giving raters the option to classify such a patient into more than one categories could
prove convenient in some applications.

1Note that ordinal data can be ranked but the difference between 2 ordinal numbers may have no
meaning. Interval data are ordinal data with the exception that the difference between 2 numbers
has a meaning although the ratio of 2 numbers may not. With ratio type data however, all arithmetic
operations are possible and are meaningful.



3.2. Generalized Kappa for 2 × 2 Tables. - 49 -

This chapter is devoted to the various extensions of several agreement coefficients
to ordinal, interval, and ratio data. We will discuss about these extensions in the
univariate as well as in the multivariate cases. While Berry and Mielke (1988) deserve
credit for being among the first to introduce these ideas, we believe that Janson and
Olsson (2001) formulated them with more precision and clarity, in addition to further
expanding them to handle missing ratings in Janson and Olsson (2004). Therefore,
the current presentation is more in line with Janson and Olsson (2001). The reader
will notice that our treatment of missing ratings is substantially different from that
of Janson and Olsson (2004), as we attempted to introduce a little more clarity in
the presentation.

3.2 Generalizing Kappa in the Context of 2 Raters and 2 Categories

Let us consider a simple inter-rater reliability experiment where two raters
A and B must each classify all 10 subjects into one of 2 possible response categories
+ (presence of a trait), and − (absence of a trait). Table 3.1 shows the raw ratings
as reported by the raters, and illustrates what will later be referred to as the raw
representation of rating data. Table 3.2 on the other hand, offers an alternative
method of reporting the same data that we refer to as the vector representation of
ratings.

Table 3.1: Table 3.2:
Raw Representation of Rating Data Vector Representation of Rating Data

Subject Rater A Rater B Subject Rater A Rater B
Squared

Euclidean
Distance

1 + + 1 (1, 0) (1, 0) 0
2 + + 2 (1, 0) (1, 0) 0
3 + − 3 (1, 0) (0, 1) 2
4 + + 4 (1, 0) (1, 0) 0
5 + − 5 (1, 0) (0, 1) 2
6 − + 6 (0, 1) (1, 0) 2
7 − − 7 (0, 1) (0, 1) 0
8 + + 8 (1, 0) (1, 0) 0
9 − − 9 (0, 1) (0, 1) 0

10 + + 10 (1, 0) (1, 0) 0

Total 6

Vector (1, 0) for example, indicates that the rater has classified the subject into
the first category (i.e. “+”) and not into the second. For this reliability experiment
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each vector has 2 elements, one for each of the 2 categories “+” and “-”. If a 3-
category measurement scale is used, then a 3-dimensional vector such as (0, 1, 0) will
be associated with the raters and the subjects they classified into category 2. With
this representation, the rater assigns not a single score to each subject, but rather
a Vector Score (or an Array Score). The rightmost column of Table 3.2 represents
the discrepancy between rater A’s and rater B’s ratings measured by the Euclidean
distance defined in the next paragraph.

The Euclidean Distance

Quantifying how far apart two vectors such as (1, 0) and (0, 1) are, has traditionally
been accomplished with the Euclidean distance defined as

√
(0 − 1)2 + (1 − 0)2 =√

2. That is, the 2 vectors are
√

2 units apart. For 2 arbitrary vectors (a, b) and
(c, d), the squared Euclidean distance is given by: (c− a)2 + (d− b)2. This definition
indicates that two identical vectors will have a distance of 0, and this will represent
agreement between 2 raters when vector scores are used. The last column of Table
3.2 contains the squared Euclidean distances between the vector ratings associated
with raters A and B. If an inter-rater reliability coefficient is expressed in the form of
distances between the raters’ respective vector ratings, then generalizing it to ordinal,
interval or ratio data will be carried out in a natural way. This will be feasible since
the Euclidean distance has always been used with interval and ratio data.

3.2.1 Calculating the Kappa Coefficient

Table 3.3 contains the distribution of the 10 subjects of Table 3.1 by
rater and category. From this contingency table and from equations 2.1, 2.2, and 2.3
of chapter 2, it follows that the overall percent agreement is pa = (5 + 2)/10 = 0.7,
while the percent chance agreement is pe = (6× 7 + 4× 3)/100 = 0.42 + 0.12 = 0.54.
Consequently, Cohen’s Kappa for raters A and B is given by:

κ̂c =
pa − pe

1 − pe
= (0.70 − 0.54)/(1 − 0.54) = 0.35.

Note that Kappa can alternatively be obtained as follows:

κ̂c = 1 − Average of the 10 squared distances of Table 3.2
Average of the 100 squared distances of Table 3.4

, (3.1)

= 1 − 6/10
92/100

= 1 − 0.60
0.92

=
0.32
0.92

= 0.35.

To create Table 3.4, each of the 10 vector scores of rater A (c.f. Table 3.2) must be
paired with all 10 vector scores of rater B. This pairing process produces 100 pairs
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of vector scores from both raters. The squared Euclidean distance between the two
vector scores of each pair is used to populate Table 3.4.

Equation 3.1 shows that Cohen’s Kappa is also a function of the squared Eu-
clidean distances between the vector scores of raters A and B. The fact that the
Euclidean distance can be used with various data types paves the way for an exten-
sion of Kappa to ordinal, interval, or even ratio data.

Table 3.3:
Distribution of 10 subjects by Rater and Category

Rater Rater A
B + − Total

+ 5 1 6
− 2 2 4

Total 7 3 10

Table 3.4:
Squared Euclidean Distances between Rater A and Rater B’s Vector Scores

Rater Rater B
A (1, 0) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

Total

(1, 0) 0 0 2 0 2 0 2 0 2 0 8
(1, 0) 0 0 2 0 2 0 2 0 2 0 8
(1, 0) 0 0 2 0 2 0 2 0 2 0 8
(1, 0) 0 0 2 0 2 0 2 0 2 0 8
(1, 0) 0 0 2 0 2 0 2 0 2 0 8
(0, 1) 2 2 0 2 0 2 0 2 0 2 12
(0, 1) 2 2 0 2 0 2 0 2 0 2 12
(1, 0) 0 0 2 0 2 0 2 0 2 0 8
(0, 1) 2 2 0 2 0 2 0 2 0 2 12
(1, 0) 0 0 2 0 2 0 2 0 2 0 8
Total 6 6 14 6 14 6 14 6 14 6 92

3.2.2 Kappa: a Function of Squared Euclidean Distances

Let us consider a situation where 2 raters A and B must classify n sub-
jects into one of 2 categories 1 or 2. Classifying a subject into one of these categories
is equivalent to assigning a 2-element vector to that subject. Let s

(a)
ik be a binary

variable, which takes value 1 if rater A classifies subject i into category k (k could be
1 or 2), and will take value 0 otherwise. For rater A, categorizing subject i amounts
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to assigning a vector score
(
s
(a)
i1 , s

(a)
i2

)
to i. This vector score will be labeled as sss

(a)
i .

The Kappa coefficient can then be represented as follows:

κ̂c = 1 −

1
n

n∑
i=1

d2
(
sss
(a)
i , sss

(b)
i

)
1
n2

n∑
i=1

n∑
j=1

d2
(
sss
(a)
i , sss

(b)
j

) , (3.2)

where d2
(
sss
(a)
i , sss

(b)
j

)
represents the squared Euclidean distance from sss

(a)
i to sss

(b)
j . Equa-

tion 3.2 will not change if the number of categories q is greater than 2. In the case
of q categories sss

(a)
i and sss

(b)
i become q-dimensional vectors. For example, the vector

score associated with rater A and subject i will be given by:

sss
(a)
i =

(
s
(a)
i1 , · · · , s

(a)
ik , · · · , s

(a)
iq

)
(3.3)

Equation 3.2 can be used if the raters assign one of 3 interval-type scores x1,
x2 and x3 rather than nominal-type scores. In this case, vector sss

(a)
i will not be a

3-element vector consisting of a single occurrence of 1 and two occurrences of 0.
Instead, sss

(a)
i will take a single value (either x1 or x2, or x3 depending on which one is

assigned to subject i). As previously seen, this coefficient is identical to the classical
Kappa coefficient of Cohen (1960) if x1, x2, and x3 are simply category labels.

When used with q interval data (x1, · · · , xk, · · · , xq), equation 3.2 leads to the
following Kappa coefficient:

κ̂′
c = 1 −

q∑
k,l

pkl(xk − xl)2

q∑
k,l

pk+p+l(xk − xl)2
, (3.4)

where pkl is the proportion of subjects to whom rater A assigned score xk and rater
B assigned score xl, pk+ is the proportion of subjects to whom rater A assigned
score xk and p+l the proportion of subjects to whom rater B assigned score xl. This
result is obtained from equation 3.2 by replacing the vector score sss

(a)
i with the single

interval score xl (l = 1, · · · , q) that rater A assigned to subject i.

When dealing with interval data, and a complete dataset with no missing ra-
ting, then you may use equation 3.4 for calculating the Kappa coefficient. However,
datasets in practice are often incomplete with some raters producing ratings on a
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limited number of subjects. Therefore, we are recommending a more general formula-
tion of Kappa, whose objective is to ensure that the different proportions of subjects
pkl, pk+, or p+l are evaluated with respect to an appropriate baseline. For example,
the proportion of subjects that raters A and B classified into categories k and l
respectively, must be evaluated with respect to the subjects that both raters have
scored. If a subject was scored by only one of the 2 raters, then it will be excluded
from the calculation of that proportion. Not excluding those subjects will lead to an
understatement of the Kappa coefficient.

• Let p′kl = pkl/(1− px), where px is the relative number of subjects scored by a
single rater (either rater A or rater B, but not both), and pkl the relative number
of subjects classified into categories k and l by raters A and B respectively.

• p′k+ = pk+/(1 − px+), where pk+ is the relative number of subjects that rater
A classified into category k, and px+ the relative number of subjects that rater
A did not score.

• p′+l = p+l/(1 − p+x), where p+l is the relative number of subjects that rater B
classified into category l, and p+x the relative number of subjects that rater B
did not score.

• Any 2 categories k and l have a weight wkl associated with them, and defined
as follows:

wkl =
{

1 − (xk − xl)2/(xmax − xmin)2, if k �= l,
1, if k = l,

(3.5)

where xmax and xmin are the largest and smallest scores respectively. The set
of weights described by equation 3.5 is known in the literature as “Quadratic
Weights.”

How are these weights calculated when the scores are ordinal and alphabetic
such as LOW, MEDIUM, HIGH ? The commonly-used approach in this case,
is to assign integer values 1,2, and 3 sequentially to categories following their
ascending order. That is 1, 2, and 3 will be assigned to LOW, MEDIUM, and
HIGH respectively.

The Kappa coefficient for interval data when the number of raters is limited to 2,
has the following general form:

κ̂′
c =

pa − pe

1 − pe
, where pa =

q∑
k,l

wklp
′
kl, and pe =

q∑
k,l

wklp
′
k+p′+l, (3.6)

Equation 3.6 describes what is known in the literature as the weighted Kappa
coefficient of Cohen (1968). As suggested by Cohen (1968), when defining weighted
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kappa, the researcher may well define a custom set of weights that may best described
the experimental design. Later in this chapter, we will present alternative sets of
weights that have been proposed in the literature.

In the next example, we will illustrate the calculation of the weighted and un-
weighted Kappa coefficients using a dataset that contains missing ratings.

Example 3.1

Consider the rating dataset of Table 3.5 where 2 raters named Rater1 and Rater2 have
classified 11 units into one of the 3 categories labeled as A, B, and C. As it appears
some units where rated by only one of the 2 raters (units not rated by either rater
must be excluded from analysis).

Table 3.5: Rating of 12 subjects by 2 Raters

Units Rater1 Rater2
1 A
2 B C
3 C C
4 C C
5 B B
6 B
7 A A
8 A B
9 B B
10 B B
11 C

Table 3.6 shows the distribution of units by rater, and includes marginal totals and
percentages. This summary table may prove useful in experiments involving a large
number of units or subjects.

Table 3.6: Distribution of Subjects by Rater

Rater 2
Rater1 A B C Missing Total Row %

A 1 1 0 1 3 27.3%
B 0 3 1 1 5 45.5%
C 0 0 2 0 2 18.2%

Missing 0 0 1 0 1 9.1%

Total 1 4 4 2 11 100%

Column % 9.1% 36.4% 36.4% 18.2% 110%

Table 3.7 on the other hand, shows the quadratic weights associated with the 3 cate-
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gories A, B, and C. These weights are assigned to the categories under the assumption
that the ranking A → B → C (i.e. C is ranked higher than B, which in turn is ranked
higher than A) represents their correct ascending order. It follows from this table that
all diagonal elements equal 1 and represent “full agreement,” while off-diagonal ele-
ments have a weight of 0 or 0.75 representing “partial agreement.” To compute these
quadratic weights from equation 3.5, we initially assigned the numbers 1, 2, and 3 to
the three categories A, B, and C respectively (note: if the categories are numeric, then
these same numeric values must be used to compute the weights).

The weighted Kappa is given by,

κ̂′
c =

0.9375 − 0.7194
1 − 0.7194

= 0.7772.

Readers who want more details regarding these calculations may download the Excel
workbook,

www.agreestat.com/book3/chapter3examples.xlsx,

which contains the “Example 3.1” worksheet with all the steps leading to the weighted
Kappa. Note that if you replace quadratic weights with Identity weights where all
diagonal elements equal 1, and all off-diagonal elements equal 0, then you will obtain
the unweighted kappa of chapter 2. The unweighted kappa is given by,

κ̂c =
0.75 − 0.3444
1 − 0.3444

= 0.61864.

Table 3.7: Quadratic Weights for a 3-Level Nominal Scale

A B C

A 1 0.75 0
B 0.75 1 0.75
C 0 0.75 1

3.3 Generalizing Pi, and BP to Interval Data : The Case of 2 Raters

The purpose of this section is to generalize the Pi coefficient of Scott (1955)
as well as the Brennan-Prediger (BP) coefficient (see Brennan & Prediger, 1981)
to interval and ratio data, using the same approach discussed in section 3.2. That
is, the interval or ratio data are used to calculate the weights as in equation 3.5,
which in turn are used in the weighted versions of the Pi and BP coefficients. Let
us consider the situation where 2 raters A and B must assign one of q interval-type
values (x1, · · · , xk, · · · , xq) to each subject.
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Let κ̂′
s be the weighted Pi coefficient. This coefficient is defined as follows:

κ̂′
s =

pa − pe

1 − pe
, where pa =

q∑
k,l

wklp
′
kl, and pe =

q∑
k,l

wklπ
′
kπ

′
l, (3.7)

where π′
k = (p′k+ +p′+k)/2, with p′k+ and p′+k being defined as in section 3.2.2. Scott’s

coefficient is often used by researchers, although it shares the same weaknesses of
Kappa. The paradoxes discussed in the previous chapter for Cohen’s Kappa, will
have a negative impact on Scott’s Pi as well.

Let κ̂′
q be the weighted BP coefficient2. It is defined as,

κ̂′
q =

pa − pe

1 − pe
, where pa =

q∑
k,l

wklp
′
kl, and pe =

1
q2

q∑
k,l

wkl. (3.8)

The BP coefficient has been extensively discussed by Brennan & Prediger (1981),
and is known to be resistant to the paradoxes associated with Kappa and Pi. Its
chance-agreement probability pe may at times slightly overstate the propensity for
raters to agree by pure chance (see Gwet 2008a). The calculation of these 2 coefficients
will be illustrated in the following example.

Example 3.2

Let us consider the rating data of Table 3.5. We previously used that dataset to
illustrate the calculation of the weighted kappa, and will now use it to compute the
weighted Pi and BP coefficients.

Table 3.8 shows the coefficients Kappa, Pi, BP, and the percent agreement in their
unweighted and weighted versions. The weighted versions of these coefficients use the
quadratic weights.

� Cohen’s Kappa is, κ̂c = (0.9375 − 0.7194)/(1 − 0.7194) = 0.7772.

� Scott’s Pi is, κ̂π = (0.9375 − 0.7429)/(1 − 0.7429) = 0.7569

� Brennan-Prediger coefficient is, κ̂3 = (0.9375 − 0.6667)/(1 − 0.6667) = 0.8125

You may find more details regarding these calculations in the “Example 3.2” worksheet
of the Excel workbook,

www.agreestat.com/book3/chapter3examples.xlsx.

2Note that Brennan & Prediger (1981) only defined an unweighted agreement coefficient that can
only handle nominal scores, and complete datasets with no missing ratings. We are proposing here
an extension to interval data that can also handle missing ratings.
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Table 3.8: Unweighted and Weighted Coefficients from Table 3.5 Data

Agreement Coefficient Unweighted Weighted

Cohen’s Kappa 0.6186 0.7772
Scott’s Pi 0.6038 0.7569

Brenann-Prediger 0.625 0.8125
Percent Agreement 0.75 0.9375

So far, we have presented methods for calculating agreement coefficients for ordi-
nal, and interval data when the number of raters is limited to 2. In the next section,
we will extend these methods to reliability studies that involve 3 raters or more. The
focus will still be on Cohen’s Kappa, Scott’s Pi, and Brennan-Prediger coefficients.

3.4 Generalizing Kappa, Pi, and BP Coefficients to Interval Data:
The Case of 3 Raters or More

Equations (3.6), (3.7) and (3.8) are useful for computing the extent of
agreement between 2 raters using interval scores, but cannot provide a global measure
of agreement among 3 raters or more. When an arbitrarily large number r of raters
must assign one of q possible interval scores to each of the n subjects, a global inter-
rater reliability coefficient is necessary and can be obtained as will now be explained.

Defining the Multiple-Rater Agreement Coefficient

A chance-corrected agreement coefficient between 2 raters labeled as g and h
generally takes the following form:

κ̂(g, h) =
pa(g, h) − pe(g, h)

1 − pe(g, h)
= 1 − 1 − pa(g, h)

1 − pe(g, h)
, (3.9)

which is the expression we previously used to extend Kappa to interval data following
the approach of Janson and Olsson (2001). To generalize to 3 raters or more, we first
form all possible pairs (g, h) of raters out of the initial set of r raters. There is a total
of r(r − 1)/2 such pairs. Then we average each of the 2 expressions

[
1 − pa(g, h)

]
and

[
1− pe(g, h)

]
across all r(r − 1)/2 pairs of raters. This operation will produce 2

averages. The generalized coefficient is then obtained by replacing the pair-specific
ratio

[
1 − pa(g, h)

]/[
1 − pe(g, h)

]
in equation 3.9 with the ratio of the 2 averages.

This is the approach that Conger (1980) used to obtain the correct generalization of
Cohen’s Kappa to the case of 3 raters or more.

Consider an experiment involving 3 raters A, B, and C. The number of raters is
r = 3, and 3× (3−1)/2 = 3 pairs of raters can be formed out of that group of raters.
These pairs are (A,B), (A,C), and (B,C). Therefore, we can compute agreement


